回归模型中,如何比较不同自变量对因变量的作用大小?

龚志忠

龚志忠

首都医科大学附属北京中医医院

擅长:临床研究数据统计分析、流行病学方法设计、临床预测模型建模与评价
已关注
关注
2021-06-22 来源:医咖会

在前期内容中,我们介绍了如何对数据进行标准化处理,将原始的连续型变量转化为一个无量纲的标准化数值,消除不同变量之间因性质、量纲、数量级等属性的差异而带来的影响,从而使不同变量的效应大小具有可比性,因此数据的标准化处理在实际的统计分析中也得到了较为广泛的应用。

那么,提到不同变量的效应大小,大家一定会联想到在多因素回归模型中所得到的回归系数。例如,我们假设自变量分别为身高和体重,根据回归系数很容易就知道每增加1cm的身高或每增加1kg的体重,引起的对因变量Y的影响大小,但是两者相比之下,到底谁的作用大谁的作用小呢?

原始的回归系数已经无法回答这样的问题,我们需要借助标准化回归系数来进行判断,今天我们就来向大家介绍一下,在回归模型中这个标准化回归系数到底是个什么鬼?

评论
请先登录后再发表评论
发表评论
medi_k8vkxeo
非常受益,感谢!
2021-06-25 15:22:06 回复
0
使用课程券需先认证
为保证平台的学术氛围,请先完成认证,认证可免费享受基础会员权益
基础课程券2张
专属科研工作台
200积分
确认
取消
下载附件需认证
为保证平台的学术氛围,请先完成认证,认证可免费享受基础会员权益
基础课程券2张
专属科研工作台
200积分
确认
取消
公众号
统计咨询
扫一扫添加小咖个人微信,立即咨询统计分析服务!
会员服务
SCI-AI工具
积分商城
意见反馈