本文内容来自《中华流行病学杂志》2019年第40卷第8期,作者为冯国双教授,原题目为《观察性研究中的logistic回归分析思路》。将这篇文章分享给医咖会的伙伴们,希望大家能从领域大咖的见解中有所收获,指导医学研究之路。
(感谢冯国双教授的授权)
观察性研究在研究设计中占有非常重要的地位,实际应用中比较常见的是病例对照研究和队列研究。尽管其应用广泛,但在数据分析中却存在不少问题。在分析时往往只考虑数据本身,而未能结合研究类型,从而导致结果的偏倚。甚至在已发表的文章中,也存在一些不严谨用语。
本文从观察性研究的类型出发,基于不同研究类型的研究目的,以logistic回归分析为例,探讨观察性研究的不同分析思路,希望为医学科研工作者提供一定的参考和借鉴。
logistic回归
假定有m个自变量X1,X2,…,Xm,logistic回归模型的基本形式可表达为:
只从数据本身考虑的话,logistic回归模型都是包括一个分类因变量及若干自变量(可以是分类变量,也可以是连续变量),反映了m个自变量对因变量的线性影响。无论对于病例对照研究还是队列研究,这种形式都是不变的。
部分研究在数据分析时,忽略了前期的设计思路,只是简单地把因变量和所有自变量纳入统计软件中相应位置,点击运行直接给出结果。从数据上来看,病例对照研究和队列研究的数据形式完全一样,软件操作过程也并无不同,都是指定因变量和自变量,然后给出参数估计值及统计检验结果。
统计软件无法判断研究者采用的是病例对照研究还是队列研究,也并不清楚作者的主要研究目的是什么,只是对指定的变量进行参数估计。而统计分析的思路需要根据研究目的和研究类型而定,对于病例对照研究或队列研究而言,它们的分析思路显然不同。一味依靠统计软件,不仅容易出现一些错误分析思路,也会导致错误的分析结果。
确认删除