在统计分析中,根据变量的不同类型可以建立不同的预测模型,如果因变量是连续型变量,最常见的是建立线性回归模型。但是,建立线性回归模型有很多前提条件(可以参考:SPSS操作:简单线性回归)。
由于实际的临床研究中,变量之间关系复杂,因变量和自变量之间并非呈现线性关系,如果强行建立线性回归模型,就会影响模型的预测准确性。对于此类数据,应该如何处理呢?之前医咖会发布过的《R语言课程》,王九谊老师在“多项式回归、分段回归、限制性立方样条...”视频课程中已做了详细介绍。本文以临床医生的角度,通过案例分析,结合R软件来讲解如何建立非线性回归模型,也对之前的视频教程内容作了延伸。
案例说明(模拟数据)
临床中心衰、肝硬化的病人,常伴有体液潴留和低钠血症,医生会选择使用托伐普坦进行超滤治疗,但是目前这个药物价格昂贵,未能广泛使用。
假设有一种新的利尿剂上市,价格便宜,且具有类似作用。为了探究新利尿剂的治疗效果,研究人员开展了一项临床试验,共入组149人(数据库名称为urinetest),因变量为患者每日尿量(变量名为urine),自变量为每日新利尿剂使用剂量(变量名为dosage)。
研究目的是为两者建立最合适的回归模型,分析步骤如下:
1、初步探索数据
2、建立简单线性回归
3、建立曲线方程
4、建立分段回归
5、建立样条回归
6、构建局部加权回归
7、建立广义可加模型
8、总结
分析步骤
分析数据前的准备工作
1、点击impordataset导入数据urinetest
2、数据预览,View(urinetest)
3、加载相关的包,请加载前用install.packages()命令安装好
确认删除