作者:高乐;审稿:龚志忠,张耀文
提到数据分析,首先会想到的可能是t检验、回归分析等各种具体的分析方法,但对于经历过完整数据分析的同学来说,最复杂、最耗费时间的步骤往往是数据的清理,也就是将数据整理成为能够进行上述统计分析的格式。因此,本节内容我们将对数据的准备进行简要介绍,重点介绍数据审核,其次会用少量篇幅简单介绍数据在进行分析时的适用性。
在数据审核方面,主要考虑的是数据的完整性和合理性,也就是对缺失数据和离群值进行识别和处理。
在很多情况下,研究中所收集的数据会出现缺失情况,缺失的类型大致可以分为以下三种:
① 完全随机缺失(Missing completely at random,MCAR),数据缺失随机发生,与自身及其他变量均无关,任何变量的每一条记录发生缺失的概率相同。例如由于设备故障、样品运输丢失等导致的数据缺失,可视为MCAR[1]。这是最理想的情况,但在许多领域中这种情况并不合理;
② 随机缺失(Missing at random,MAR),是一种较为合理的情况。缺失值与自身变量无关,但与其他研究变量相关。假设老师的职称越高,提供其工资信息的可能性越低,那么每个职称分组中可认为老师工资信息缺失是随机发生的,可以通过加权的方法进行解决;
③ 非随机缺失(Missing not at random,MNAR),即缺失值与自身变量有关。例如一项研究中对受教育程度情况进行了调查,受教育程度较低的个体可能存在该变量的缺失,这就是非随机缺失。
① 缺失值删除
(a) 删除缺失数据行,适用于MCAR数据的处理,在大样本量且缺失较少的情况下很有效。该方法不会影响结果估计的准确性,但样本量会因此减小,从而影响结果的精确性;
确认删除