本文内容来自《中华流行病学杂志》2019年第40卷第8期,作者为许璐 , 王胜锋 , 詹思延教授,原题目为《基于大数据的随机对照试验》。将这篇文章分享给医咖会的伙伴们,希望大家能从领域大咖的见解中有所收获,指导医学研究之路。
(感谢作者的授权)
一直以来,传统随机对照试验(randomized controlled trial,RCT)都被视为评价干预措施的金标准。但传统RCT一方面有成本高、周期长、实施难度大等局限性,另一方面较为严格的纳入排除标准,导致了研究对象的人群代表性较差,研究结果的外推性常常受到质疑。
为了解决传统RCT结果外推性差的问题,实效性随机对照试验(pragmatic randomized controlled trial,PRCT)的概念被提出。
PRCT具有以下特征:①更关注于所研究的干预措施与结局之间的关联,而不注重因果关系的解释;②研究人群更接近于一般人群;③PRCT中所采取的干预措施,一般为目前已经投入临床使用的治疗方法,而不是未知的,还未在患者中推广使用的治疗措施;④与传统RCT相比,PRCT对研究对象的纳入排除标准更加宽松。但由于PRCT大体上还是沿用了传统RCT的实施方法,所以PRCT的开展仍具有一定的难度。
随着大数据时代的到来,越来越多的学者开始考虑将传统流行病学研究设计(如:队列研究、病例对照研究、RCT等)与医学大数据相结合,从大数据分析中收集真实世界的证据,大数据随机对照试验(big data randomized controlled trial,BRCT)作为一个新兴名词应运而生。
如Wang等[1-2]曾提出过大数据临床试验(big-data clinical trial,BCT)这一名词,并指出BCT可以利用全部目标人群开展研究,避免了以往RCT只能抽取少数样本开展研究所带来的样本代表性较差的问题。
确认删除