在前几期的内容中,我们介绍了多因素回归分析时,为探讨影响因素对结局事件的影响大小,可以利用森林图更直观的将回归结果可视化。还没来得及阅读的小伙伴请点击查看:
手把手教绘制回归分析结果的森林图『GraphPad Prism和Excel』;
同样是构建多因素回归模型,往往我们另一个主要目的是为了对结局事件的发生风险进行预测,那么是否也可以将预测模型的结果,像森林图那样可视化地展示出来呢?今天小咖就来带大家认识一下神奇的列线图。
认识列线图
列线图(Alignment Diagram),又称诺莫图(Nomogram图),它是建立在多因素回归分析的基础上,将多个预测指标进行整合,然后采用带有刻度的线段,按照一定的比例绘制在同一平面上,从而用以表达预测模型中各个变量之间的相互关系。
列线图的基本原理,简单的说,就是通过构建多因素回归模型(常用的回归模型,例如Cox回归、Logistic回归等),根据模型中各个影响因素对结局变量的贡献程度(回归系数的大小),给每个影响因素的每个取值水平进行赋分,然后再将各个评分相加得到总评分,最后通过总评分与结局事件发生概率之间的函数转换关系,从而计算出该个体结局事件的预测值。
列线图将复杂的回归方程,转变为了可视化的图形,使预测模型的结果更具有可读性,方便对患者进行评估。正是由于列线图这种直观便于理解的特点,使它在医学研究和临床实践中也逐渐得到了越来越多的关注和应用。
解读列线图
闲话少说,先上文章哈。今天我们以2017年发表在JACC:Cardiovascular Imaging杂志上的一篇文章《Development and Validation of a Simple-to-Use Nomogram for Predicting 5-, 10-, and 15-Year Survival in Asymptomatic Adults Undergoing Coronary Artery Calcium Scoring》为例来进行说明,文中结果部分展示的列线图如下图所示。
确认删除