提到趋势性检验,我们在前期的内容中,介绍过了Cochran-Armitage趋势检验,用于检验两个分类变量之间是否存在一定的变化趋势。但是我们在阅读文献时,也常常会看到文章结果展示的表格中,给出了P for trend的检验结果,如下表所示。
针对上表内容,首先复习一下我们前期介绍的有关回归模型中设置哑变量的内容,对于连续性变量,可以考虑将其转化为哑变量后带入到回归模型中,详见:想将连续变量转化为哑变量纳入回归模型,咋分组?
在本例中不难理解,研究人员将每一个自变量按照一定的切点分为3组,并以水平最低的一组作为参照,设置了2个哑变量带入到模型中,分别求出其对应的OR值及P值。同时在表格中每一个变量分组下又列出了一行P for trend的结果,那么问题来了,这个P for trend代表的是什么意义呢,它有什么作用呢?我们在实际的分析中怎样才能求得P for trend的结果呢?
今天我们将结合几篇发表的文献,来向大家介绍一下回归模型中趋势性检验的魅力。
研究实例一
JAMA Oncology期刊(影响因子:16.56)2017年10月在线发表了一篇文章《Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer》,研究人员探讨了高级别浆液性卵巢癌患者生存时间与CD8+肿瘤浸润性淋巴细胞(TIL)水平之间的剂量反应关系,部分结果如下表所示。
我们可以看出,研究人员将CD8+ TIL按照其计数水平分为阴性Negative(计数为0)、低水平Low(1-2 TILs)、中水平Moderate(3-19 TILs)和高水平High(≥20 TILs)共4组,在构建Cox回归模型时,以Negative组为参照组,其余3组设定为3个哑变量进入回归模型。
确认删除