一文带你玩转森林图!

龚志忠

龚志忠

首都医科大学附属北京中医医院

擅长:临床研究数据统计分析、流行病学方法设计、临床预测模型建模与评价
已关注
关注
2018-06-13 来源:医咖会

提到森林图,相信大家一定不会感到陌生,在Meta分析中,森林图可以说是必不可少,它用一种非常形象的图形方式,简单直观的展示了Meta分析的统计汇总结果,受到了研究者的欢迎。那么,除了在Meta分析中,森林图还能用在什么地方呢,今天我们的话题就从森林图开始说起。

认识森林图

森林图(forest plot),从定义上讲,它一般是在平面直角坐标系中,以一条垂直于X轴的无效线(通常坐标X=1或0)为中心,用若干条平行于X轴的线段,来表示每个研究的效应量大小及其95%可信区间,并用一个棱形来表示多个研究合并的效应量及可信区间,它是Meta分析中最常用的结果综合表达形式。

我们先来看一篇2017年发表在Lancet杂志的一篇Meta分析《Optimal timing of an invasive strategy in patients with non-ST-elevation acute coronary syndrome: a meta-analysis of randomised trials》,以这篇文章为例来带领大家认识一下森林图中各个图形的含义。

解读森林图

我们在认识了解森林图每个图形的含义后,下面向大家介绍一下如何解读森林图的临床意义。通常森林图有两种类型,一类是二分类变量森林图,一类是连续变量森林图。

1. 二分类变量森林图

上面的例子给大家展示的就是最为经典的二分类变量森林图,在这类研究中,常用相对危险度(RR)、比值比(OR)或风险比(HR)来作为表示研究因素效应量大小的指标。通常情况下,在森林图中以效应量点估计值=1作为无效线,假定无效线左侧为因素A(作为参照),无效线右侧为因素B。

评论
请先登录后再发表评论
发表评论
使用课程券需先认证
为保证平台的学术氛围,请先完成认证,认证可免费享受基础会员权益
基础课程券2张
专属科研工作台
200积分
确认
取消
下载附件需认证
为保证平台的学术氛围,请先完成认证,认证可免费享受基础会员权益
基础课程券2张
专属科研工作台
200积分
确认
取消
公众号
统计咨询
扫一扫添加小咖个人微信,立即咨询统计分析服务!
会员服务
SCI-AI工具
积分商城
意见反馈