写在前面的话:时不时有小伙伴会咨询多重线性回归、logistic回归和Cox回归的区别,本文虽不是专门讲三者区别的文章,但是文中有个表也许会对你有所帮助哦。
之前的内容里,我们介绍了在观察性研究中,当预后因素在暴露组和对照组间分布不均衡时,最简单的处理办法就是对研究资料按照混杂因素来进行分层分析,从而达到控制混杂因素的目的。
然而,分层分析仅仅适用于混杂因素较少,且多为分类变量的情况。当我们的研究中存在较多的混杂因素,且混杂因素较为复杂(例如混杂因素为多分类变量或连续变量)时,应该如何对混杂因素进行控制和调整呢?
今天我们就来一起讨论下,大家平时最常用到的多因素调整分析法。
多因素调整分析
多因素分析是相对于单因素分析而言,单因素分析仅关注一个因素在组间的差异或对结局事件的效应大小,而不考虑其他因素的影响。但实际上一种结局事件的发生和发展,常常受到多个因素的共同作用,因此仅采用单因素分析往往并不十分合理。多因素分析则是把多个变量之间的内在联系和相互影响考虑在内,同时分析多个因素对结局的影响。
在观察性研究中,我们通常可以构建一个多因素调整的回归方程,来探讨对结局有独立作用的影响因素。其中方程的因变量为结局事件,而自变量既包括研究者关注的暴露/处理因素(如药物、手术等),也包括其他可以影响结局的混杂因素(如年龄、性别、疾病严重程度等)。
三种回归模型
在多因素调整分析方法中,根据因变量的类型不同,我们最常应用到的三种回归模型即:多重线性回归、logistic回归及Cox回归。三种回归模型应用的条件和区别如表1所示。
需要强调的是,应用回归模型进行多因素调整时,任何回归模型都是一个黑匣子,一定要考虑到每个回归模型的使用条件及模型的稳定性,如因变量的类型、分布特点、自变量之间的独立性、共线性等问题,切忌不要盲目套用模型,以免得出错误的结果。
确认删除