论文中统计报告的注意事项:多因素模型和诊断试验

杨超

杨超

北京大学第一医院

擅长:慢性疾病的人群流行病学研究
已关注
关注
张耀文

张耀文

医咖会

擅长:研究设计、统计分析、循证医学、样本量计算、随机化方案、数据管理
已关注
关注
李延龙

李延龙

上海盛迪医药有限公司

擅长:研究设计和统计分析
已关注
关注
2022-04-21 来源:医咖会

作者:杨超 鲁艺斐 李延龙 张耀文

2019年3月,European Urology 杂志(IF 17.581)发表了泌尿外科临床研究领域的统计报告指南《Guidelines for Reporting of Statistics for Clinical Research in Urology》,目的在于提升人们的统计学知识,改善论文质量。

 

在之前的文章“医学论文中统计报告要注意的诸多细节:p值、置信区间...”中,我们介绍了p值、置信区间、研究估计值等报告时要注意的问题,今天这篇文章我们再来看一看多因素模型和诊断试验中统计报告的注意事项,以及结论和解释部分要注意的问题

1. 多因素模型和诊断试验

1.1 多变量回归、倾向性评分和工具变量并不是一根魔棒

有研究者认为多变量调整可以“消除混杂”、“使两组相似”或“模拟随机试验”。但这个说法有两个问题:首先,记录在数据集中的变量值通常是近似值,因此可能会掩盖组间差异。

例如,当使用临床分期作为协变量,比较不同治疗方案对局限性前列腺癌的预后时,如果一组临床分期为T2c 期患者多于另一组,那么该组的预后可能会更差。但是T2c 期也具有不同表型。多变量调整T2c 时,并不能保证T2c 的不同表型也完全相同。

其次,模型只针对少数测量的协变量进行调整,并不能排除未测量(甚至不可测量)的协变量存在重要作用的可能性。通常情况下,倾向性评分匹配比传统的多变量回归能更好地调整混杂因素。工具变量法的效果则主要取决于工具变量的质量。在许多情况下,工具变量与干预没有很强的关联,这导致了95% CI的大幅增加;而在某些情况下,则会低估治疗效果。

1.2 避免完全依赖“逐步选择”

研究者通常根据单因素分析的结果来选择多因素模型中要纳入哪些变量;或者,先将所有变量都纳入到一个模型中,然后删除那些统计学意义不显著的变量。然而,这种完全依赖现有数据的变量选择方法在回归模型的建立过程中并不可取,可能会增加过度拟合的风险,并使许多统计量(如95% CI)受到高度质疑。逐步选择法应该限定于特定情况,比如在模型建立的初期,对哪些变量可能是预测变量知之甚少的时候。

1.3 在检验干预措施的效果时,避免报告协变量的OR值或HR值

一个研究应该只回答一个科学问题。比如,研究者在探讨两种不同根治性前列腺切除术对疾病复发的影响,应当着重报告两种术式的OR值或HR值。尽管模型可能会调整诸如临床分期、分级以及前列腺特异抗原(PSA)等因素(协变量),但报告这些因素(协变量)的OR值或HR值对主要研究问题反而没有帮助,反倒会干扰读者对研究主要结果的关注。

1.4 将连续变量分段,使结果的解释更有意义

有的连续变量取值范围很大,作为影响因素预测结局时,结果无法解释。例如某研究显示,年龄每增加1岁时,癌症风险OR值为1.02(95% CI 1.01-1.02)。 其中点估计值与95%CI上限均为1.02,结果难以解释,也没有临床意义。为了解决这一问题,我们可以将年龄以10岁为单位分段,这样模型得到的OR值,即年龄每增加10岁时,增加的癌症风险OR的值是多少。

1.5 避免根据效应大小对预测因素进行排序

有的研究者在模型中会对预测因子进行排序,例如,声称“新的标志物是复发的最强预测因子”。 多数情况下,这种排序是基于对OR值和HR值大小的比较,这是一种错误的思想。不同变量间的OR或HR值,会受到变量的编码方式,变量单位的选择的影响。此外,比较模型中分类变量和连续变量的系数,也是很困难的。

最后,报告分类预测因子的暴露比例也很重要,这一点从疾病防治的角度尤为重要。例如,去除OR值为2.0、占比为50%的危险因素,相较于去除OR值为3.5但占比为0.1%的危险因素,可以避免更多的疾病结局。因为第一个因素尽管OR值小,但是在总人群中占比高,所以如果去除第一个因素,那么在总人群中,改变疾病结局发生人数的绝对值要更多。

1.6 谨慎考虑模型的区分度和校准度

将基于某个特定人群建立的模型应用于其他人群时,应当谨慎考虑模型的区分度。例如,一个预测勃起功能障碍的模型(包括年龄因素)在普通成年男性群体中比老年男性群体中区分度更高,因为普通成年男性群体年龄变异更大。因此,将该模型外推应用于老年男性人群中时,是否能够很好的区分勃起功能障碍,应当谨慎考虑。

校准度也是统计模型的一个重要组成部分。校准度的意义是模型给出的风险是否接近其真实风险。如果某个特定人群的数据中建立的一个模型,则该模型用于其他人群时,应当报告校准度,或者以校准图的方式展示校准度。

(更多阅读:你的预测模型靠谱吗?详解区分度和校准度的SPSS操作!

评论
请先登录后再发表评论
发表评论
使用课程券需先认证
为保证平台的学术氛围,请先完成认证,认证可免费享受基础会员权益
基础课程券2张
专属科研工作台
200积分
确认
取消
下载附件需认证
为保证平台的学术氛围,请先完成认证,认证可免费享受基础会员权益
基础课程券2张
专属科研工作台
200积分
确认
取消
公众号
统计咨询
扫一扫添加小咖个人微信,立即咨询统计分析服务!
会员服务
SCI-AI工具
积分商城
意见反馈