卡方检验(2x2) (简洁版)

SPSS教程卡方检验/Fisher精确检验
问答

点击绿色“提问”按钮

  • 针对本文提问
  • 查看历史问答

长按鼠标选中正文某句话

  • 对选中的内容进行针对性提问
一、问题与数据

学了这么多连续变量的统计分析,那么对于计数资料可咋整。小伙伴会问了:如果我想看不同患者人群的术后复发率有没有差异,怎么办?这时候就需要欢迎我们的统计小助手——卡方检验闪亮登场啦!

 

卡方检验可是一位重量级选手,凡是涉及到计数资料分布的比较都需要他的帮忙。和t检验一样,卡方检验也会用在成组和配对设计资料分析中,本期我们一起聊聊独立样本四格表的χ2检验。


用药物A治疗急性心肌梗死患者198例,24小时内死亡11例,病死率为5.56%,另42例治疗时采用药物B,24小时内死亡6例,病死率为14.29%,提问:两组病死率有无差别?

 

表1. 两种药物急性心肌梗塞患者治疗后24小时内死亡情况

二、对问题分析

“生存”,还是“死亡”,这是个问题,但更是一个典型的二分类结局指标,我们关注的重点是两种药物治疗后“生存”和“死亡”的分布(或者说病死率)有无差别,由此组成的2*2列联表就是χ2检验中经典的“四格表”(如表1)。

 

下面一起看看SPSS怎样搞定χ2检验。

三、SPSS操作
请先登录
这么重要的内容,赶快登录查看吧!
四、结果解释
请先登录
这么重要的内容,赶快登录查看吧!
五、撰写结论
两种药物治疗急性心肌梗塞患者的预后并不相同,A药病死率为5.6%,低于 B药(14.3%),但差异无统计学意义(χ2=2.796,P=0.095)。

1、χ2检验是基于χ2分布的一种假设检验,简单讲就是想看看实际观测数和理论频数偏离程度。比如说,上面提到的例子中服用A药后共观察到187例存活,这里的187例就是“实际观测数”,对应的“理论频数”是187所在行列合计的乘积与总例数的比值,也就是198*223/240=184。所有单元格的实际观测数和理论频数计算出后,可根据如下公式计算χ2,得到相应的P值。

 

χ2=∑[(实际观测数-理论频数)2/理论频数],ν=(行数-1)*(列数-1)

 

χ2检验的原假设是实际观测数和理论频数分布一致,如果P<0.05,那么拒绝原假设,认为实际观测数和理论频数分布是不一致的,也就是A药和B药治疗后的转归是不同的。当然有了统计分析软件,我们就不需要这么辛苦的计算啦。

 

2、如果χ2检验所得P值在0.05左右,或者总例数较小,理论频数较少时,给出的结论一定要谨慎,不要简单给出P>0.05或者P<0.05,靠谱儿的做法是给出明确的P值。另外,利用列联表χ2检验比较不同患者某种治疗结局有无差别时,还应该评估不同组患者是否“同质”。举个例子,患者病情严重程度是否一致,这些特征都可能会影响最终结果的判断,对于这一类问题,可以考虑分层χ2检验,logistic回归进行处理,这些后面我们接着聊~~~ 

描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
提交问题
Next
Previous
描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
提交问题
描述问题
选择一个标签 (请选择一个与您问题最相符的标签)
    提交问题